Senin, 29 Desember 2014

Metode Pembelajaran Matematika


Misteri Bilangan Nol

Ratusan tahun yang lalu, manusia hanya mengenal 9 lambang bilangan yakni 1, 2, 2, 3, 5, 6, 7, 8, dan 9. Kemudian, datang angka 0, sehingga jumlah lambang bilangan menjadi 10 buah. Tidak diketahui siapa pencipta bilangan 0, bukti sejarah hanya memperlihatkan bahwa bilangan 0 ditemukan pertama kali dalam zaman Mesir kuno. Waktu itu bilangan nol hanya sebagai lambang. Dalam zaman modern, angka nol digunakan tidak saja sebagai lambang, tetapi juga sebagai bilangan yang turut serta dalam operasi matematika. Kini, penggunaan bilangan nol telah menyusup jauh ke dalam sendi kehidupan manusia. Sistem berhitung tidak mungkin lagi mengabaikan kehadiran bilangan nol, sekalipun bilangan nol itu membuat kekacauan logika. Mari kita lihat.
Nol, penyebab komputer macet
Pelajaran tentang bilangan nol, dari sejak zaman dahulu sampai sekarang selalu menimbulkan kebingungan bagi para pelajar dan mahasiswa, bahkan masyarakat pengguna. Mengapa? Bukankah bilangan nol itu mewakili sesuatu yang tidak ada dan yang tidak ada itu ada, yakni nol. Siapa yang tidak bingung? Tiap kali bilangan nol muncul dalam pelajaran Matematika selalu ada ide yang aneh. Seperti ide jika sesuatu yang ada dikalikan dengan 0 maka menjadi tidak ada. Mungkinkah 5*0 menjadi tidak ada? (* adalah perkalian). Ide ini membuat orang frustrasi. Apakah nol ahli sulap?
Lebih parah lagi-tentu menambah bingung-mengapa 5+0=5 dan 5*0=5 juga? Memang demikian aturannya, karena nol dalam perkalian merupakan bilangan identitas yang sama dengan 1. Jadi 5*0=5*1. Tetapi, benar juga bahwa 5*0=0. Waw. Bagaimana dengan 5o=1, tetapi 50o=1 juga? Ya, sudahlah. Aturan lain tentang nol yang juga misterius adalah bahwa suatu bilangan jika dibagi nol tidak didefinisikan. Maksudnya, bilangan berapa pun yang tidak bisa dibagi dengan nol. Komputer yang canggih bagaimana pun akan mati mendadak jika tiba-tiba bertemu dengan pembagi angka nol. Komputer memang diperintahkan berhenti berpikir jika bertemu sang divisor nol.
Bilangan nol: tunawisma
Bilangan disusun berdasarkan hierarki menurut satu garis lurus. Pada titik awal adalah bilangan nol, kemudian bilangan 1, 2, dan seterusnya. Bilangan yang lebih besar di sebelah kanan dan bilangan yang lebih kecil di sebelah kiri. Semakin jauh ke kanan akan semakin besar bilangan itu. Berdasarkan derajat hierarki (dan birokrasi bilangan), seseorang jika berjalan dari titik 0 terus-menerus menuju angka yang lebih besar ke kanan akan sampai pada bilangan yang tidak terhingga. Tetapi, mungkin juga orang itu sampai pada titik 0 kembali. Bukankah dunia ini bulat? Mungkinkah? Bukankah Columbus mengatakan bahwa kalau ia berlayar terus-menerus ia akan sampai kembali ke Eropa?
Lain lagi. Jika seseorang berangkat dari nol, ia tidak mungkin sampai ke bilangan 4 tanpa melewati terlebih dahulu bilangan 1, 2, dan 3. Tetapi, yang lebih aneh adalah pertanyaan mungkinkan seseorang bisa berangkat dari titik nol? Jelas tidak bisa, karena bukankah titik nol sesuatu titik yang tidak ada? Aneh dan sulit dipercaya? Mari kita lihat lebih jauh.
Jika di antara dua bilangan atau antara dua buah titik terdapat sebuah ruas. Setiap bilangan mempunyai sebuah ruas. Jika ruas ini dipotong-potong kemudian titik lingkaran hitam dipindahkan ke tengah-tengah ruas, ternyata bilangan 0 tidak mempunyai ruas. Jadi, bilangan nol berada di awang-awang. Bilangan nol tidak mempunyai tempat tinggal alias tunawisma. Itulah sebabnya, mengapa bilangan nol harus menempel pada bilangan lain, misalnya, pada angka 1 membentuk bilangan 10, 100, 109, 10.403 dan sebagainya. Jadi, seseorang tidak pernah bisa berangkat dari angka nol menuju angka 4. Kita harus berangkat dari angka 1.
Mudah, tetapi salah
Guru meminta Ani menggambarkan sebuah garis geometrik dari persamaan 3x+7y = 25. Ani berpikir bahwa untuk mendapatkan garis itu diperlukan dua buah titik dari ujung ke ujung. Tetapi, setelah berhitung-hitung, ternyata cuma ada satu titik yang dilewati garis itu, yakni titik A(6, 1), untuk x=6 dan y=1. Sehingga Ani tidak bisa membuat garis itu. Sang guru mengingatkan supaya menggunakan bilangan nol. Ya, itulah jalan keluarnya. Pertama, berikan y=0 diperoleh x=(25-0)/3=8 (dibulatkan), merupakan titik pertama, B(8,0). Selanjutnya berikan x=0 diperoleh y=(25-3.0)/7=4 (dibulatkan), merupakan titik kedua C(0,4). Garis BC, adalah garis yang dicari. Namun, betapa kecewanya sang guru, karena garis itu tidak melalui titik A. Jadi, garis BC itu salah.
Ani membela diri bahwa kesalahan itu sangat kecil dan bisa diabaikan. Guru menyatakan bahwa bukan kecil besarnya kesalahan, tetapi manakah yang benar? Bukankah garis BC itu dapat dibuat melalui titik A? Kata guru, gunakan bilangan nol dengan cara yang benar. Bagaimana kita harus membantu Ani membuat garis yang benar itu? Mudah, kata konsultan Matematika. Mula-mula nilai 25 dalam 3x+7y harus diganti dengan hasil perkalian 3 dan 7 sehingga diperoleh 3x+7y=21.
Selanjutnya, dalam persamaan yang baru, berikan y=0 diperoleh x=21/3=7 (tanpa pembulatan) itulah titik pertama P(6,1). Kemudian berikan nilai x=0 diperoleh y=21/7 = 3 (tanpa pembulatan), itulah titik kedua Q(0, 3). Garis PQ adalah garis yang sejajar dengan garis yang dicari, yakni 3x+7y=25. Melalui titik A tarik garis sejajar dengan PQ diperoleh garis P1Q1. Nah, begitulah. Sang murid telah menemukan garis yang benar berkat bantuan bilangan nol.
Akan tetapi, sang guru masih sangat kecewa karena sebenarnya tidak ada satu garis pun yang benar. Bukankah dalam persamaan 3×1+7×2=25 hanya ada satu titik penyelesaian yakni titik A, yang berarti persamaan 3×1+7×2 itu hanya berbentuk sebuah titik? Bahkan pada persamaan 3×1+7×2=21 tidak ada sebuah titik pun yang berada dalam garis PQ. Oleh karena itu, garis PQ dalam sistem bilangan bulat, sebenarnya tidak ada. Aneh, bilangan nol telah menipu kita. Begitulah kenyataannya, sebuah persamaan tidak selalu berbentuk sebuah garis.
Bergerak, tetapi diam
Bilangan tidak hanya terdiri atas bilangan bulat, tetapi juga ada bilangan desimal antara lain dari 0,1; 0,01; 0,001; dan seterusnya sekuat-kuat kita bisa menyebutnya sampai sedemikian kecilnya. Karena sangat kecil tidak bisa lagi disebut atau tidak terhingga dan pada akhirnya dianggap nol saja. Tetapi, ide ini ternyata sempat membingungkan karena jika bilangan tidak terhingga kecilnya dianggap nol maka berarti nol adalah bilangan terkecil? Padahal, nol mewakili sesuatu yang tidak ada? Waw. Begitulah.
Berdasarkan konsep bilangan desimal dan kontinu, maka garis bilangan yang kita pakai ternyata tidak sesederhana itu karena antara dua bilangan selalu ada bilangan ke tiga. Jika seseorang melompat dari bilangan 1 ke bilangan 2, tetapi dengan syarat harus melompati terlebih dahulu ke bilangan desimal yang terdekat, bisakah? Berapakah bilangan desimal terdekat sebelum sampai ke bilangan 2? Bisa saja angka 1/2. Tetapi, anda tidak boleh melompati ke angka 1/2 karena masih ada bilangan yang lebih kecil, yakni 1/4. Seterusnya selalu ada bilangan yang lebih dekat… yakni 0,1 lalu ada 0,01, 0,001, …, 0,000001. demikian seterusnya, sehingga pada akhirnya bilangan yang paling dekat dengan angka 1 adalah bilangan yang demikian kecilnya sehingga dianggap saja nol. Karena bilangan terdekat adalah nol alias tidak ada, maka Anda tidak pernah bisa melompat ke bilangan 2?

Misteri Bilangan Lubang Hitam : 123

Dalam astronomi dan fisika, kita mengenal adanya suatu fenomena alam yang sangat menarik yaitu lubang hitam (black hole). Lubang hitam adalah suatu entitas yang memiliki medan gravitasi yang sangat kuat sehingga setiap benda yang telah jatuh di wilayah horizon peristiwa (daerah di sekitar inti lubang hitam), tidak akan bisa kabur lagi. Bahkan radiasi elektromagnetik seperti cahaya pun tidak dapat melarikan diri, akibatnya lubang hitam menjadi “tidak kelihatan”.
Ternyata, dalam matematika juga ada fenomena unik yang mirip dengan fenomena lubang hitam yaitu bilangan lubang hitam. Bagaimana sebenarnya bilangan lubang hitam itu? Mari kita bermain-main sebentar dengan angka.
Coba pilih sesuka hati Anda sebuah bilangan asli (bilangan mulai dari 1 sampai tak hingga). Sebagai contoh, katakanlah 141.985. Kemudian hitunglah jumlah digit genap, digit ganjil, dan total digit bilangan tersebut. Dalam kasus ini, kita dapatkan 2 (dua buah digit genap), 4 (empat buah digit ganjil), dan 6 (enam adalah jumlah total digit). Lalu gunakan digit-digit ini (2, 4, dan 6) untuk membentuk bilangan berikutnya, yaitu 246.
Ulangi hitung jumlah digit genap, digit ganjil, dan total digit pada bilangan 246 ini. Kita dapatkan 3 (digit genap), 0 (digit ganjil), dan 3 (jumlah total digit), sehingga kita peroleh 303. Ulangi lagi hitung jumlah digit genap, ganjil, dan total digit pada bilangan 303. (Catatan: 0 adalah bilangan genap). Kita dapatkan 1, 2, 3 yang dapat dituliskan 123.
Jika kita mengulangi langkah di atas terhadap bilangan 123, kita akan dapatkan 123 lagi. Dengan demikian, bilangan 123 melalui proses ini adalah lubang hitam bagi seluruh bilangan lainnya. Semua bilangan di alam semesta akan ditarik menjadi bilangan 123 melalui proses ini, tak satu pun yang akan lolos.
Tapi benarkah semua bilangan akan menjadi 123? Sekarang mari kita coba suatu bilangan yang bernilai sangat besar, sebagai contoh katakanlah 122333444455555666666777777788888888999999999. Jumlah digit genap, ganjil, dan total adalah 20, 25, dan 45. Jadi, bilangan berikutnya adalah 202.545. Lakukan lagi iterasi (pengulangan), kita peroleh 4, 2, dan 6; jadi sekarang kita peroleh 426. Iterasi sekali lagi terhadap 426 akan menghasilkan 303 dan iterasi terakhir dari 303 akan diperoleh 123. Sampai pada titik ini, iterasi berapa kali pun terhadap 123 akan tetap diperoleh 123 lagi. Dengan demikian, 123 adalah titik absolut sang lubang hitam dalam dunia bilangan.
Namun, apakah mungkin saja ada suatu bilangan, terselip di antara rimba raya alam semesta bilangan yang jumlahnya tak terhingga ini, yang dapat lolos dari jeratan maut sang bilangan lubang hitam, sang 123 yang misterius ini?

Matematika dan Bilangan Prima

Bilangan prima adalah dasar dari matematika, termasuk salah satu misteri alam semesta. Tidak pernah terbayangkan oleh manusia sebelumnya, sampai ditemukan bahwa bilangan prima juga merupakan dasar dari kehidupan alam, yang dengan usaha keras ingin dijelaskan oleh ilmu ini dalam sains. Pandangan orang umumnya mengatakan bahwa matematika hanyalah penemuan manusia biasa. Sebaliknya, beberapa pemikir masa lalu – Pythagoras, Plato, Cusanus, Kepler, Leibnitz, Newton, Euler, Gauss, termasuk para revolusioner abad ke-20, Planck, Einstein dan Sommerffeld – yakin bahwa keberadaan angka dan bentuk geometris merupakan konsep alam semesta dan konsep yang bebas (independent). Galileo sendiri beranggapan bahwa matematika adalah bahasa Tuhan ketika menulis alam semesta.
Bilangan Prima dan Rencana Penciptaan
Salah satu teka-teki lama yang belum sepenuhnya terpecahkan adalah bilangan prima. Bilangan prima adalah bilangan yang hanya dapat habis dibagi oleh bilangan itu sendiri dan angka 1. Angka 12 bukan merupakan bilangan prima, karena dapat habis dibagi oleh angka lainnya 2, 3, dan 4. Bilangan prima adalah 2, 3, 5, 7, 11, 13, …. dan seterusnya. Banyak bilangan prima tidak terhingga. Tidak peduli berapa banyak kita menghitung, pasti kita akan menemukan bilangan prima, walaupun mungkin makin jarang_ Hal ini menjadi teka-teki kita, jika kita ingat bilangan ini tidak dapat dibagi oleh angka lainnya. Salah satu hal yang menakjubkan, dalam era komputer kita memberikan kodetifikasi semua hal yang penting dan rahasia, di bank, asuransi, dan perhitungan-perhitungan peluru kendali, security system dengan enkripsi, dalam angka jutaan bilangan-bilangan yang tidak habis dibagi oleh angka lainnya. Ini diperlukan karena dengan penggunaan angka lain, kodetifikasi tadi dapat dengan mudah ditembus.
Fenomena inilah yang ditemukan ilmuwan dari Duesseldorf (Dr. Plichta), sehubungan dengan penciptaan alam, yaitu distribusi misterius bilangan prima. Para ilmuwan sudah lama percaya bahwa bilangan prima adalah bahasa universal yang dapat dimengerti oleh semua makhluk (spesies) berintelegensia tinggi, sebagai komunikasi dasar antarmereka. Bahasa ini penuh misteri karena berhubungan dengan perencanaan universal kosmos.
Bilangan lain yang perlu diketahui adalah sisa dari bilangan prima, yakni bilangan komposit, kecuali angka 1, yaitu 4, 6, 8, 9,10,12,14,15, …. dan seterusnya. Dengan kata lain, bilangan komposit adalah bilangan yang terdiri dari minimal dua faktor prima. Misalnya :
6 = 2 x 3 = 2 . 3
30 = 2 x 3 x 5 = 2 . 3 . 5
85 = 5 x 17 = 5 . 17

Selain itu, dikenal pula bilangan khusus, yang disebut prima kembar, yaitu bilangan prima yang angkanya berdekatan dengan selisih 2. Misalnya :
(3,5)
(5,7)
(11,13)
(17,19) dan seterusnya.

Mayoritas ahli astrofisika juga percaya bahwa di alam semesta terdapat “kode kosmos” atau yang disebut cosmic code based on this order, yang dikenal juga sebagai Theory of Everything (TOE), yang artinya terdapat konstanta-konstanta alam semesta yang saling berhubungan berdasarkan perintah pendesain. Sekali perintah tersebut dapat dipecahkan, maka hal ini akan membuka pandangan sains lainnya yang berhubungan.

Hakikat Belajar Matematika

Hudojo (1988: 1) mengemukakan bahwa seseorang dikatakan belajar bila diasumsikan dalam diri orang itu terjadi suatu proses kegiatan yang mengakibatkan perubahan tingkah laku. Selanjutnya Winkel (1989: 36) mendifinisikan belajar adalah suatu aktivitas mental/psikis yang berlangsung dalam interaktif dengan lingkungan, yang menghasilkan perubahan-perubahan dalam pengetahuan, pemahaman, keterampilan dan nilai sikap.
Slameto (1980: 2) mengemukakan bahwa secara psikologis belajar merupakan suatu proses perubahan yaitu perubahan tingkah laku sebagai hasil interaksi dengan lingkungannya lebih jauh dikatakan bahwa perubahan tingkah laku dalam belajar adalah: (1) perubahan ini terjadi secara sadar, (2) perubahan dalam belajar bersifat kontinu dan fungsional, (3) perubahan dalam belajarbersifat/bernilai positif dan aktif, (4) perubahan dalam belajar bukan bersifat sementara, dan (5) perubahan belajar bertujuan dan terarah.
Sedang Rusyan (1989: 8) mengemukakan pendapatnya tentang belajar, sebagai berikut: belajardalam arti yang luas adalah proses perubahan tingkah laku yang dinyatakan dalam bentuk penguasaan, penggunaan, dan penilaian mengenai sikap dan nilai-nilai, pengetahuan dan kecakapan dasar yang terdapat dalam berbagai bidang studi, atau lebih luas lagi dalam berbagai aspek kehidupan atau pengalaman yang terorganisasi.
Dari beberapa pendapat di atas, dapatlah disimpulkan bahwa belajar adalah suatu proses perubahan tingkah laku yang bersifat positif dalam diri seseorang. Perubahan tingkah laku yang diakibatkan oleh belajar dapat ditunjukkan dalam berbagai bentuk, misalnya bertambahnya pengetahuan, pemahaman, keterampilan dan perubahan sikap. Salah satu contoh hasil dari usaha belajar Bilangan Pecahan adalah dari belum memiliki pengetahuan tentang Bilangan Pecahan menjadi memiliki pengetahuan tentang Bilangan Pecahan.
2. Belajar Matematika
Soedjadi (2000: 1) mengemukakan bahwa ada beberapa definisi atau pengertian matematikaberdasarkan sudut pandang pembuatnya, yaitu sebagai berikut:
  • Matematika adalah cabang ilmu pengetahuan eksak dan terorganisisr secara sistematik
  • Matematika adalah pengetahuan tentang bilangan dan kalkulasi
  • Matematika adalah pengetahuan tentang penalaran logik dan berhubungan dengan bilangan.
  • Matematika adalah pengetahuan fakta-fakta kuantitatif dan masalah tentang ruang dan bentuk.
  • Matematika adalah pengetahuan tentang struktur-struktur yang logic
  • Matematika adalah pengetahuan tentang aturan-aturan yang ketat.
Meskipun terdapat beraneka ragam definisi matematika, namun jika diperhatikan secara seksama, dapat terlihat adanya ciri-ciri khusus yang dapat merangkum pengertian matematika secara umum. Selanjutnya Soedjadi (2000: 13) mengemukakan beberapa ciri-ciri khusus dari matematika adalah:
  • Memiliki objek kajian yang abstrak
  • Bertumpu pada kesepakatan
  • Berpola pikir deduktif,
  • Memiliki simbol yang kosong dari arti,
  • Memperhatikan semesta pembicaraan,
  • Konsisten dalam sistemnya.
Berdasarkan uraian yang telah dikemukakan dapat dikatakan bahwa hakekat matematika adalah kumpulan ide-ide yang bersifat abstrak, terstruktur dan hubungannya diatur menurut aturan logis berdasarkan pola pikir deduktif.
Belajar matematika tidak ada artinya jika hanya dihafalkan saja. Dia baru mempunyai makna bila dimengerti. Orton (1991: 154) mengemukakan bahwa hendaknya siswa tidak belajar matematika hanya dengan menerima dan menghafalkan saja, tetapi harus belajar secara bermakna, belajar bermakna merupakan suatu cara belajar dengan pengertian dari pada hafalan.
Soedjadi (1985) menyatakan bahwa untuk menguasai matematika diperlukan cara belajar yang berurutan, setapak demi setapak dan bersinambungan. Hal ini juga sejalan dengan pendapat Hudojo (1988: 4) yang mengatakan bahwa untuk mempelajari matematika haruslah bertahap, berurutan, serta mendasarkan kepada pengalaman belajar yang lalu. Lebih lanjut dikatakan bahwa proses belajar matematika akan terjadi dengan lancar bila belajar itu dilakukan secara kontinu.
Uraian di atas menunjukkan bahwa belajar matematika memerlukan pengertian dan dalam mempelajari proses pembelajarannya haruslah dilakukan secara bertahap, berurutan dan berkesinambungan.

Bagaimana Sebaiknya Matematika Diajarkan?

Matematika adalah ilmu realitas, dalam artian ilmu yang bermula dari kehidupan nyata. Selayaknya pembelajarannya dimulai dari sesuatu yang nyata, dari ilustrasi yang dekat dan mampu dijangkau siswa, dan kemudian disederhanakan dalam formulasi matematis. Mengajarkan matematika bukan sekedar menyampaikan aturan-aturan, definisi-definisi, ataupun rumus-rumus yang sudah jadi. Konsep matematika seharusnya disampaikan bermula pada kondisi atau permasalahan nyata. Berikut tahapan pengajaran yang dapat dilakukan:
  1. Siswa dibawa untuk mengamati dan memahami persoalan terlebih dahulu. Selanjutnya perkenalkan beberapa definisi penting yang harus dipahami agar siswa memiliki bekal untuk memahami fenomena-fenomena yang mereka temukan di lapangan.
  2. Ajak siswa untuk melakukan eksplorasi, mencoba-coba, dan biarkan mereka melihat apa yang terjadi. Di sini akan ada proses memunculkan ide-ide kreatif yang boleh jadi diluar dugaan guru. Di sinilah ruang kreatifitas terbentuk. Siswa akan lebih menikmati proses pembelajaran yang dilakukan.
  3. Biarkan siswa membuat hipotesis/dugaan atas apa yang mereka lakukan.
  4. Guru bersama siswa membahas kegiatan yang dilakukan. Berikan kesempatan pada para siswa untuk mempresentasikan hasil pengamatan mereka. Kemudian baru dilakukan proses verifikasi, meluruskan apa yang sudah dilakukan sehingga muncul formula atau rumus atau model yang dapat dijadikan rujukan ketika siswa menemukan persoalan serupa.
  5. Satu hal yang juga tidak kalah penting adalah proses mengapresiasi. Seandainya hipotesis yang diambil oleh siswa ternyata kurang tepat maka guru hendaknya tetap memberi apresiasi. Dengan seperti itu, maka siswa akan tetap terpacu motivasinya.
Sebagai contoh dalam pembelajaran mengenai perbandingan trigonometri . Pembelajaran trigonometri sering kali ditakuti karena yang nampak ke permukaan adalah simbol-simbol dan rumus-rumus yang abstrak. Adapun maknanya jarang diangkat dan dipahamkan kepada para siswa. Perbandingan trigonometri sesungguhnya berawal dari persoalan nyata. Berikut salah satu alternatif pengajaran yang dapat dilakukan:
  1. Guru terlebih dahulu menjelaskan definisi-definisi penting sebagai bekal bagi mereka untuk melakukan observasi dilapangan.
  2. Selanjutnya minta para siswa untuk mengukur tinggi benda-benda seperti tiang bendera, pohon, bangunan kelas, dan lain-lain. Biarkan mereka berekslporasi menemukan caranya sendiri. Dari sisni tentu akan ada beragam cara yang diusulkan siswa agar dapat mengukur tinggi benda-benda tersebut. Dalam hal ini guru bertugas mengakomodir berbagai respon yang muncul, membimbing, dan mencoba mengarahkan para siswa agar tidak terlalu keluar dari wilayah yang dijadikan tujuan.
  3. Berikutnya guru dapat mengarahkan siswa untuk menerapkan perbandingan trigonometri dalam permasalahan tersebut. Misalnya akan diukur tinggi pohon P. Minta salah seorang siswa, katakanlah siswa A, berdiri dalam jarak tertentu terhadap benda yang ingin diukur ketinggiannya. Misalkan jaraknya x meter. Dengan bantuan klinometer dapat diketahui besarnya sudut yang dibentuk oleh siswa A dengan pohon P, katakanlah sudut yang dibentuk adalah ?. Dengan menggunakan aturan tangent, dengan mudah akan diperoleh tinggi pohon P. yakni:
Tinggi pohon P = x tan(?)

  1. Ajak siswa membandingkan efektifitas dan tingkat kemudahan berbagai macam cara yang diperoleh melalui kegiatan tersebut. Dari sini akan diperoleh gambaran bahwa matematika khususnya perbandingan trigonometri dapat mempermudah menyelesaikan permasalahan yang ada.
  2. Kegiatan pembelajaran dapat diakhiri dengan meminta siswa menuliskan rangkaian kegiatan yang dilakukan hingga hasil akhir yang dicapai. Dengan ini, kemungkinan besar siswa dapat lebih memahami konsep perbandingan trigonometri.
Proses pembelajaran seperti ini, jika terus dilakukan dan dikembangkan dalam berbagai topik pembelajaran matematika , dimungkinkan akan menciptakan pembelajaran matematika yang lebih asyik dan menarik, sekaligus mengikis pencitraan buruk dan menakutkan yang melekat padanya.

Asal usul matematika

Jika merunut catatan sejarah, Matematika telah lahir sejak 3000 SM yaitu pada saat Bangsa Mesir Kuno dan Babilonia mulai menggunakan aritmetika, aljabar, dan geometri untuk keperluan astronomi, bangunan dan konstruksi, perpajakan dan urusan keuangan lainnya. Sistematisasi matematika menjadi suatu ilmu, baru terjadi pada zaman Yunani Kuno yakni antara tahun 600 dan 300 SM. Sejak saat itu matematika mulai berkembang luas, interaksi matematika dengan bidang lain seperti sains dan teknologi semakin nampak. Kini, matematika telah menjadi alat penting dalam berbagai hal. Hampir setiap bidang ilmu dan teknologi memakai matematika. Dalam realita yang demikian, penguasaan terhadap matematika menjadi syarat perlu agar dapat mempertahankan eksistensi di era perkembangan ilmu dan teknologi sekarang ini
Pembelajaran matematika secara formal umumnya diawali di bangku sekolah. Sementara itu, matematika di sekolah masih menjadi pelajaran yang menakutkan bagi para siswa. Di antara berbagai faktor yang memicu hal ini adalah proses pembelajaran yang kurang asyik dan menarik. Model pembelajaran yang sering di temui pada pembelajaran matematika adalah proses pembelajaran bercorak “teacher centered”, yaitu pembelajaran yang berpusat pada guru. Sehingga guru menjadi pemeran utama dan kehadirannya menjadi sangat menentukan. Pembelajaran menjadi tak dapat dilakukan tanpa kehadiran guru. Siswa cenderung pasif dan tidak berperan selama proses pembelajaran. Sehingga proses yang muncul adalah “take and give”. Dalam merangkai pembelajaran, guru pada umumnya terbiasa dengan model standar, yakni pembelajaran yang bermula dari rumus, menghapalnya, kemudian diterapkan dalam contoh soal.
Model pembelajaran yang demikian tidak memberi ruang bagi siswa untuk melakukan observasi (mengamati), eksplorasi (menggali), inkuiri (menyelidiki), dan aktivitas-aktivitas lain yang memungkinkan mereka terlibat dan memahami permasalahan yang sesungguhnya. Model seperti ini yang mengakibatkan matematika bak kumpulan rumus yang menyeramkan, sulit dipelajari, dan nampak abstrak.

Jumat, 26 Desember 2014

25 cara pembuktian phytagoras

25 Macam Pembuktian Teorema Pythagoras
   Siapa yang belum mendengar “Teorema Pythagoras”? sejak di sekolah dasar kita telah diperkenalkan dengan sifat yang terdapat pada segitiga siku-siku tersebut. Sebagai tambahan wawasan dan pengetahuan bagi para guru, berikut ini disajikan penjelasan singkat mengenai sejarah teorema Phytagoras serta 25 cara membuktikannya.
   Teorema Pythagoras merupakan salah satu teorema yang telah dikenal manusia sejak peradaban kuno. Nama teorema ini diambil dari nama seorang matematikawan Yunani yang bernama Pythagoras. Pythagoras lahir di pulau Samos, Yunani, sekitar tahun 570 SM. Sesuai dengan nasehat gurunya Thales, Pythagoras muda mengunjungi Mesir sekitar tahun 547 SM dan tinggal di sana.
    Bangsa Mesir kuno telah mengetahui bahwa segitiga dengan panjang sisi 3, 4 dan 5 akan membentuk sebuah sudut siku-siku. Mereka menggunakan tali yang diberi simpul pada beberapa tempat dan menggunakannya untuk membentuk sudut siku-siku pada bangunan-bangunan mereka termasuk piramid. Diyakini bahwa mereka hanya mengetahui tentang segitiga dengan sisi 3, 4 dan 5 yang membentuk segitiga siku-siku, sedangkan teorema yang berlaku secara umum untuk segitiga siku-siku belum mereka ketahui.
          Di Cina, Tschou-Gun yang hidup sekitar 1100 SM juga mengetahui teorema ini. Demikian juga di Babylonia, teorema ini telah dikenal pada masa lebih dari 1000 tahun sebelum Pythagoras. Sebuah keping tanah liat dari Babilonia pernah ditemukan dan memuat naskah yang kira-kira berbunyi sebagai berikut: “4 is length and 5 the diagonal. What is the breadth?”

     Pythagoras-lah yang telah membuat generalisasi dan  membuat teorema ini menjadi populer. Secara singkat teorema Pythagoras berbunyi:
Pada sebuah segitiga siku-siku, kuadrat sisi miring (sisi di depan sudut sikusiku) sama dengan jumlah kuadrat sisi-sisi yang lain.

1.    Pembuktian dari Sekolah Pythagoras
Sifat pada segitiga siku-siku ini sebenarnya telah dikenal berabad-abad sebelum masa Pythagoras, seperti di Mesopotamia, juga Cina. Tetapi catatan tertulis pertama yang memberi bukti berasal dari Pythagoras. Bukti dari sekolah Pythagoras tersebut tersaji pada gambar di bawah.
Perhatikan bahwa:
 
Luas daerah hitam pada gambar (1) adalah a2 + b2
Luas daerah hitam pada gambar (2) adalah c2
Dengan demikian a2 + bc2

2.    Pembuktian lain menggunakan diagram Pythagoras
Bukti berikut ini lebih sederhana tetapi menggunakan sedikit manipulasi aljabar. Keempat segitiga siku-siku yang kongruen disusun membentuk gambar di bawah ini.


Dengan menghitung luas bangun bujur sangkar yang terjadi melalui dua cara akan diperoleh:
(a + b)                       =          c2 + 4. ½ ab
a2 + 2ab + b2           =          c2 + 2 ab
a2 + b2                     =          c2

3.    Bukti dari Astronom India Bhaskara (1114 - 1185)

Bukti berikut ini pertama kali terdapat pada karya Bhaskara (matematikawan India, sekitar abad X). Bangun ABCD di atas berupa bujursangkar dengan sisi c. Di dalamnya dibuat empat buah segitiga siku-siku dengan panjang sisi a dan b.
Dengan konstruksi bangun tersebut, maka:
Luas PQRS + 4  x luas ABQ    =      luas ABCD
(b – a)2 + 4 x ½ . ab                   =      c2
b2 – 2ab + a2 + 2ab                   =      c2
a2 + b2                                       =      c2

4.    Pembuktian Teorema Pythagoras oleh Presiden J. A. Garfield
Pembuktian ini berasal dari J. A. Garfield pada tahun 1876. Luas daerah trapesium di bawah ini dapat dihitung dengan dua cara sehingga teorema Pythagoras dapat dibuktikan sebagai berikut.

Luas trapesium       =          (alas + atas)/2. tinggi               =          (a + b)/2. (a + b)
Di lain pihak, luas trapesium          =          2. ½ ab + ½ c2
Sehingga, (a + b)/2. (b)               =          2. ½ ab + ½ c2
a2 + 2ab + b2                                     =          2ab + c2
a2 + b2                                               =          c2

5.    Bukti menggunakan Garis Tinggi dan Sifat Segitiga Sebangun (Pembuktian Baskhara yang Kedua)
Perhatikan gambar berikut:


Segitiga ABC sebangun dengan segitiga ACD sehingga b/c = c1/c atau b2 = c . c1 ... (1)
Segitiga ABC sebangun dengan segitiga CBD sehingga a/c = c2/a atau a2 = c . c... (2)
Dari (1) dan (2) diperoleh:
a2 + b2 = c . cc . c2
a2 + b2 = c (cc2)
a2 + b2 = c . c
a2 + b2 = c2

6.    Bukti menggunakan Transformasi
Misal segitiga ABC siku-siku di C. Putarlah segitiga ABC sejauh 900 berlawanan arah dengan putaran jarum jam dengan pusat rotasi C. Akan diperoleh segitiga A’B’C’ yang berimpit dengan segitiga ABC.

½ a2                        =          (1)
½ b2                                =          (2) + (3)
------------------------------------ +
½ a2 + ½ b            =          (1) + (2) + (3)
                               =          [(1) + (2)] + (3)
                               =          ½ cx + ½ cy
                               =          ½ c (x + y)
                               =          ½ c.c
                               =          ½ c2
Dengan mengalikan dua pada setiap ruas maka akan diperoleh ab2 = c2

7.    Bukti dengan Dasar Perbandingan lagi

Diberikan segitiga ABC yang siku-siku di C. Kalikan setiap sisi dengan c. Lalu bentuk dua segitiga sebangun dengan ABC seperti pada gambar di atas. Dengan perbandingan sisi pada segitiga-segitiga sebangun akan diperoleh panjang sisi-sisi yang lain pada bangun di samping. Dari konstruksi tersebut jelas c2 = a2 + b2.
Bukti sejenis ini terdapat pula dalambeberapa buku dan publikasi, seperti oleh Birkhoff.

8.    Bukti dengan “Bayangan”
Perhatikan bahwa kelima gambar di bawah ini memuat daerah gelap dengan luas yang sama (menggunakan konsep kesamaan luas bangun-bangun datar).
9.    Bukti dengan “Putaran”

Perhatikan proses dari diagram di atas.
Luas daerah gambar awal   =   a2 + b2 + 2. ½ . ab
Luas daerah gambar akhir  =    c2 + 2. ½. Ab
Oleh karena transformasi di atas tidak mengubah ukuran, maka kedua daerah tersebut sama luasnya, sehingga dengan mengurangi masing-masing oleh ab atau mengambil kedua bangun segitiga siku-siku akan diperoleh:
a2 + b2 = c2 (Sumardyono, 2003)

10.    Bukti dengan cara “Geser, Potong, lalu Putar”
Perhatikan bukti geometris berikut ini, dengan cara menggeser, memotong, dan memutar.

(Sumardyono, 2004)

11.    Bukti dari Euclid
Bukti berikut ini pertama kali diberikan oleh Euclid. Perhatikan gambar di bawah ini.

DBQE        =          NLBD ..... kedua bangun konruen
                   =          MLBC...... alas sama-sama BL dengan tinggi tetap BD
                   =          SRBC ...... alas sama-sama BC dengan tinggi tetap BR
                   =          a2

ADEP         =          KNDA..... kedua bangun konruen
                   =          KMCA ..... alas sama-sama AK dengan tinggi tetap AD
                   =          UTCA ...... alas sama-sama AC dengan tinggi tetap AU
                   =          b2

c2    = BDQE + ADEP
       =     a2     +    b2

12.    Bukti dari Leonardo da Vinci
Diberikan segitiga siku-siku ABC. Buatlah segitiga JHI kongruen dengan ABC. Maka segiempat ABHI, JHBC, ADGC, dan EDGF adalah kongruen.

Bukti teorema Pythagoras dilakukan sebagai berikut:
Luas ADGC + luas EDGF = luas ABHI + luas JHBC
                 Luas ADEFGC = luas ABCJHI
Kedua bangun memuat dua segitiga yang kongruen dengan segitiga ABC, sehingga:
Luas ADEFGC – 2. Luas ABC     =          luas ABCJHI – 2. Luas ABC
Luas ABED + luas BCGF             =          luas ACJI

13.    Bukti dengan cara “Tambah lalu Geser”
Susunlah empat segitiga siku-siku yang kongruen dengan segitiga ABC seperti pada gambar sebelah kiri, lalu tambahkan sebuh bujur sangkar dengan luas b – a.

Maka diperoleh:
Luas KMNPQR     =          luas KSQR + luas MNP
                                 =          a2 + b2
Kemudian pindahkan segitiga 1 dan 4 sehingga membentuk bangun di sebelah kanan. Bangun yang terbentuk adalah bujur sangakar dengan sisi c, sehingga luasnya c2. (Sumardyono, 2003)

14.    Bukti dari Liu Hui (pada 3 Masehi)
Bukti berikut bersifat geometris. Tetapi Anda dengan mudah dapat membuktikannya secara aljabar.

15.    Bukti dari Tsabit ibn Qorra
Bukti berikut berasal dari Tsabit ibn Qorra (836-901) dan merupakan generalisasi Teorema Pythagoras. Diberikan sebarang segitiga ABC. Buatlah titik A’ dan B’ pada AB sedemikian sehingga < BA’C = < AB’C = < CAB’ (untuk gambar atas <CAB’ tumpul dan untuk gambar bawah < CAB’ lancip). Dengan demikian tampak bahwa segitiga ABC, segitiga CBA’ dan segitiga ACB’ saling sebangun.


Kesebangunan ini mengakibatkan:
AC/BA = A’B/CB (pandang segitiga CBA’ dan ABC )
AC/AB = AB’/AC (pandang segitiga ACB’ dan ABC)

Sehingga akan diperoleh BC2 + AC2 = AB(A’B + AB’)
Apabila sudut C siku-siku maka A’ = B’ dan Teorema Pythagoras terpenuhi.
                                          
16.    Bukti dari Pappus

Bukti berikut berasal dari Pappus (sekitar 300 M) dan merupakan suatu generalisasi. Buat sebarang segitiga ABC. Lalu buat sebarang jajargenjang CADE (di sisi CA) dan sebarang jajargenjang CBFG (di sisi BC). Kemudian panjang DE dan FG hingga bertemu, katakan di H. Kemudian lukis AL dan BM sejajar dan sama panjang dengan HC. Maka:
Luas CADE    =          luas CAUH     =          luas SLAR
Luas CBFG                 =          luas CBVH     =          luas SMBR
--------------------------------------------------------------------------- +
Luas CADE + luas CBFG                              =          luas ABML
Bila segitiga ABC adalah segitiga siku-siku (dengan sudut siku-siku di C) serta jajargenjang di sisi CA dan BC merupakan bujursangkar, maka akan diperoleh Teorema Pythagoras.

17.    Pembuktian dengan Segitiga Sama Sisi
Buat segitiga siku-siku dengan panjang sisi a, b, dan c.

Kemudian buat segitiga sama sisi dengan panjang a, b, dan c di setiap sisi-sisinyasehinggaakan tampak seperti gambar berikut.

Dari gambar di atas,diketahui bahwa luas segitiga sama sisi pada sisi miring sama dengan jumlah segitiga sama sisi lainnya.
Untuk segitiga dengan panjang sisi k, l, dan m maka luas segitiga tersebut adalah






18.    Pembuktian dengan Identitas Trigonometri Pythagoras
Buat segitiga siku-siku dengan panjang sisi a, b, dan, c seperti gambar berikut.
Kemudian dengan menggunakan trigonometri untuk menentukan sinus dan cosinus sudut Ө yaitu sebagai berikut.


Hubungan antara sinus dan cosinus dinamakan sebagai identitas trigonometri Pythagoras yang mendasar. Sehingga pada trigonometri kita ketahui bahwa


Hubungan antara sinus dan cosinus dinamakan sebagai identitas trigonometri Pythagoras yang mendasar. Sehingga pada trigonometri kita ketahui bahwa.

19.    Pembuktian denan Persamaan Differensial
Pertama gambar segitiga siku-siku ABC seperti gambar berikut

b diperpanjang ke titik D yaitu sisi db, c juga diperpanjang dengan sisi dc. Terdapat dua sisi segitiga yang sebangun yaitu segitiga AED (EA tegak lurus terhadap sisi miring) dan segitiga ABC seperti gambar berikut.
oleh karena itu rasio atau perbandingan sisi-sisi pada segitiga tersebut harus sama, yaitu:

Dapat ditulis sebagai berikut

Perhatikan gambar, apabila b = 0, maka a harus berhimpit terhadap c. Artiya a = c. Maka konstanta = c2 = a2 sehingga c2 = b2 + a2 terbukti.

20.    Pembuktian Thabit Ibn Qurra
Buat persegi panjang dengan panjang a dan b, kemudian disusun berdampingan seperti gambar berikut.

Luas bangun di atas adalah persegi besar dan persegi kecil yaitu a2 + b2.
Persegi di atas kita gabungkan, kemudian buat garis sedemikian rupa sehingga akan tampak seperti gambar di bawah, dimana sisi c menjadi sisi miring.
Selanjutnya segitiga kita potong dan tempatkan di bagian lain yaitu samping kanan dan bagian atas sehingga akan tampak seperti gambar berikut.


Bangun yang terbentuk adalah sbuah bujur sangkar dengan luas c2.

21.    Pembuktian John Kawamura
Pembuktian ini ditemukan oleh siswa SMA yang dilaporkan oleh Chris Davis, guru geometrinya di Head-Rouce School, Oakland, CA.

Kedua diagonal tegak lurus memiliki panjang c, sehingga daerah yang sama dengan c2/2 sehingga
c2/2 = Luas bangun ABCD
                    = Luas BCD + Luas ABD
        = a.a/2 + b.b/2
 c2     = a2 + b2 terbukti

22.    Pembuktian Tao Tong

ABC dan BED dua buah segitiga yang kongruen. E pada AB.
Luas ABD = BD.AF/2 = DE.AB/2
Berdasarkan gambar di atas diperoleh
(c-x)/2 = b.b/2.x = CF  (diperoleh dari kesamaan BD dan AC pada segitiga BFC dan ABC).
x = a2/2
23.    Pembuktian dengan beberapa segitiga yang sebangun.

Berdasarkan gambar di atas diperoleh
y/b = b’/c, x/a = a’/c + cx = aa’ + bb’
maka cc’ = aa’ + bb’
24.    Pembuktian dengan dua trapesium yang kongruen
Pembuktianini ditemukan oleh seorang siswa SMA, Jamie deLemos.


Kuas dari trapesium tersebut adalah
(2a+2b)/2.(a+b)
Di lain pihak
2.a.b/2 + 2b.a/2 + 2.c2/2
Dari dua persamaan tersebut diperoleh:
a2 + b2 = c2

25.    Pembuktian dari weininjieda dari Cina

Misal CE = BC = a, CD =AC =b, F titik potong DE dan AB.
Segitiga CED kongruen dengan segitiga ABC, misal DE = AB = c.
AC tegak lurus dengan BD
BE tegak lurus dengan AD, dan 
ED tegak lurus dengan AB. Maka diperoleh
Luas segitiga ABD = Luas segitiga ABE + Luas segitiga ACD + luas segitiga BCE
Akan diperoleh persmaan
c(c+EF) = EF. C + b2 + a2
yang bentuk sederhananya
c2 = b2 + a2